organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S)-O-[4-(2,2,4-Trimethylchroman-4-yl)phenyl] N,N-dimethylthiocarbamate

Tia Jacobs* and Martin W. Bredenkamp

Department of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, South Africa Correspondence e-mail: tj@sun.ac.za

Received 30 July 2007; accepted 23 October 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.109; data-to-parameter ratio = 15.7.

Crystallization of the (S)-enantiomer of the title compound, C₂₁H₂₆NO₂S, from methanol gave an unsolvated crystal structure in which one-dimensional strands of molecules are formed through a series of $C-H \cdots O$ and $C-H \cdots S$ hydrogen bonds, and $C-H \cdot \cdot \pi$ interactions.

Related literature

For related literature, see: Esterhuysen et al. (2005); Flippen et al. (1970); Hardy et al. (1979); Jacobs et al. (2006); Lloyd & Bredenkamp (2005); Lloyd, Alen, Bredenkamp et al. (2006); Lloyd, Alen, Jacobs et al. (2006); Lloyd et al. (2005); de Vries et al. (2005); Brienne & Jacques (1975).

Experimental

Crystal data

C21H25NO2S $M_r = 355.48$ Monoclinic, P2 a = 6.5858(5) Å b = 7.1397 (5) Å c = 19.996 (1) Å $\beta = 94.780 \ (1)^{\circ}$

 $V = 936.95 (11) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.19 \text{ mm}^{-1}$ T = 100 (2) K $0.21 \times 0.18 \times 0.15 \text{ mm}$

Data collection

Bruker APEX CCD area-detector	3574 independent reflections
diffractometer	3479 reflections with $I > 2\sigma(I)$
Absorption correction: none 5663 measured reflections	$R_{\rm int} = 0.043$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$ wR(F ²) = 0.109	H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.46 \text{ e} \text{ Å}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$
3574 reflections	Absolute structure: Flack (1983),
228 parameters	1404 Friedel pairs
1 restraint	Flack parameter: 0.01 (7)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C7 - H7 \cdots O1^{i} \\ C20 - H20B \cdots S^{ii} \end{array}$	0.95	2.55	3.414 (2)	151
	0.98	2.73	3.671 (2)	160

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z; (ii) x, y + 1, z.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED.

The authors thank the National Research Foundation of South Africa for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2021).

References

- Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Brienne, M. J. & Jacques, J. (1975). Tetrahedron Lett., pp. 2349-2352.
- Bruker (2002). SMART. Version 5.628. Bruker AXS Inc., Madison, Wisconsin, USA
- Bruker (2003). SAINT. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.
- Esterhuysen, C., Bredenkamp, M. W. & Lloyd, G. O. (2005). Acta Cryst. C61, 032-034
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Flippen, J. L., Karle, J. & Karle, I. L. (1970). J. Am. Chem. Soc. 92, 3749-3755.
- Hardy, A. D. U., McKendrick, J. J., MacNicol, D. D. & Wilson, D. R. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 729-734.
- Jacobs, T., Lloyd, G. O. & Bredenkamp, M. W. (2006). Acta Cryst. E62, 04400o4402.
- Lloyd, G. O., Alen, J., Bredenkamp, M. W., de Vries, E. J. C., Esterhuysen, C. & Barbour, L. J. (2006). Angew. Chem. Int. Ed. 45, 5354-5358.
- Lloyd, G. O., Alen, J., Jacobs, T., Bredenkamp, M. W. & de Vries, E. J. C. (2006). Acta Cryst. E62, 0691-0693.
- Lloyd, G. O. & Bredenkamp, M. W. (2005). Acta Cryst. E61, o1512-o1514.
- Lloyd, G. O., Bredenkamp, M. W. & Barbour, L. J. (2005). Chem. Commun. pp. 4053-4055.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany,
- Vries, E. J. C. de, Bredenkamp, M. W., Jacobs, T. & Lloyd, G. O. (2005). Acta Crvst. E61, o2871-o2872.

Acta Cryst. (2007). E63, o4444 [doi:10.1107/S160053680705249X]

(S)-O-[4-(2,2,4-Trimethylchroman-4-yl)phenyl] N,N-dimethylthiocarbamate

T. Jacobs and M. W. Bredenkamp

Comment

In an ongoing investigation of Dianin's compound (4-*p*-hydroxyphenyl-2,2,4-trimethylchroman) (Flippen *et al.*, 1970) and the inclusion chemistry of its derivatives, we synthesized the title compound (Fig. 1, I) (Esterhuysen *et al.*, 2005; Lloyd *et al.*, 2005; Lloyd *et al.*, 2006; Jacobs *et al.*, 2006).

The title compound was synthesized as a chirally pure intermediate from (*S*)-4-(4-Hydroxyphenyl)-2,2,4-trimethylchroman in the preparation of the resolved thiol derivative of Dianin's compound. Here we report the structure of the resolved dimethylthiocarbamate derivative, which is very different from the corresponding racemic structure (de Vries *et al.*, 2005). The molecules form bilayer-type sheets in the [100] plane (Fig 2). The molecule packing is stabilized by C—H···O and C—H···S hydrogen bonds, and intermolecular C—H··· π interactions (Table 1, *Cg* is the centroid of the C10—C15 benzene ring), with the dimethylthiocarbamate moieties associating and the chroman moieties pointing towards each other.

Experimental

(*S*)-4-*p*-hydroxyphenyl-2,2,4-trimethylchroman was chirally resolved according to the literature method (Brienne & Jacques, 1975) from a racemic mixture of the compound. This chirally pure species was then converted into the title compound according to the literature method (Hardy *et al.*, 1979). Single crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol solution.

Refinement

All the H atoms were included in the riding-model approximation, with C—H = 0.95–0.98, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$ (C20 and C21).

Figures

Fig. 1. The molecular structure of (I), showing atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. The bilayer-type packing of compound I, intermolecular interactions are shown as red dashed lines. Cg denotes the ring centroid. [Symmetry codes: (i) 1 - x, y - 1/2, -z; (ii) x, 1 + y, z; (iii) x, y - 1, z; (iv) 1 - x, y + 1/2, -z.]

(S)-O-[4-(2,2,4-Trimethylchroman-4-yl)phenyl] N,N-dimethylthiocarbamate

Crystal data	
C ₂₁ H ₂₅ NO ₂ S	$F_{000} = 380$
$M_r = 355.48$	$D_{\rm x} = 1.260 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1032 reflections
a = 6.5858 (5) Å	$\theta = 2.3 - 19.3^{\circ}$
b = 7.1397 (5) Å	$\mu = 0.19 \text{ mm}^{-1}$
c = 19.996 (1) Å	T = 100 (2) K
$\beta = 94.780 \ (1)^{\circ}$	Blocks, colourless
$V = 936.95 (11) \text{ Å}^3$	$0.21\times0.18\times0.15~mm$
Z = 2	

Data collection

Bruker APEX CCD area-detector diffractometer	3574 independent reflections
Radiation source: fine-focus sealed tube	3479 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.0^{\circ}$
T = 100(2) K	$\theta_{\min} = 1.0^{\circ}$
ω scans	$h = -6 \rightarrow 8$
Absorption correction: none	$k = -8 \rightarrow 9$
5663 measured reflections	$l = -25 \rightarrow 23$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.042$	$w = 1/[\sigma^2(F_o^2) + (0.0762P)^2 + 0.15P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.109$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$
3574 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
228 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1358 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.01 (7)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S	0.28200 (7)	0.52502 (8)	0.44057 (2)	0.02235 (14)
01	0.8148 (2)	0.1302 (2)	0.07012 (7)	0.0197 (3)
O2	0.5200 (2)	0.7164 (2)	0.36253 (7)	0.0236 (3)
Ν	0.3274 (3)	0.8928 (3)	0.42094 (9)	0.0228 (4)
C1	0.9298 (3)	0.2663 (3)	0.11193 (9)	0.0179 (4)
C2	0.9973 (3)	0.1746 (3)	0.17922 (9)	0.0162 (4)
H2A	1.0753	0.2678	0.2076	0.019*
H2B	1.0911	0.0702	0.1710	0.019*
C3	0.8242 (3)	0.0978 (3)	0.21874 (9)	0.0148 (4)
C4	0.6675 (3)	0.0035 (3)	0.16921 (9)	0.0151 (4)
C5	0.5173 (3)	-0.1144 (3)	0.19136 (9)	0.0170 (4)
Н5	0.5098	-0.1308	0.2382	0.020*
C6	0.3786 (3)	-0.2084 (3)	0.14704 (10)	0.0198 (4)
Н6	0.2777	-0.2870	0.1636	0.024*
C7	0.3887 (3)	-0.1864 (3)	0.07831 (10)	0.0189 (4)
H7	0.2949	-0.2500	0.0476	0.023*

C8	0.5361 (3)	-0.0713 (3)	0.05506 (9)	0.0186 (4)
H8	0.5438	-0.0568	0.0081	0.022*
C9	0.6736 (3)	0.0237 (3)	0.09965 (9)	0.0159 (3)
C10	0.7311 (3)	0.2545 (3)	0.25958 (9)	0.0147 (4)
C11	0.5289 (3)	0.3112 (3)	0.24875 (9)	0.0165 (4)
H11	0.4411	0.2478	0.2161	0.020*
C12	0.4517 (3)	0.4591 (3)	0.28479 (10)	0.0179 (4)
H12	0.3137	0.4972	0.2765	0.021*
C13	0.5801 (3)	0.5485 (3)	0.33256 (9)	0.0181 (4)
C14	0.7813 (3)	0.4949 (3)	0.34578 (9)	0.0187 (4)
H14	0.8673	0.5576	0.3791	0.022*
C15	0.8553 (3)	0.3475 (3)	0.30932 (9)	0.0177 (4)
H15	0.9929	0.3090	0.3183	0.021*
C16	0.3755 (3)	0.7167 (3)	0.40763 (9)	0.0167 (4)
C17	1.1158 (3)	0.3091 (3)	0.07366 (10)	0.0224 (4)
H17A	1.0710	0.3600	0.0294	0.027*
H17B	1.1933	0.1937	0.0683	0.027*
H17C	1.2023	0.4010	0.0988	0.027*
C18	0.8008 (3)	0.4421 (3)	0.11708 (11)	0.0227 (4)
H18A	0.6748	0.4104	0.1374	0.027*
H18B	0.7672	0.4940	0.0721	0.027*
H18C	0.8773	0.5351	0.1450	0.027*
C19	0.9192 (3)	-0.0513 (3)	0.26836 (10)	0.0205 (4)
H19A	1.0249	0.0072	0.2989	0.025*
H19B	0.9799	-0.1517	0.2432	0.025*
H19C	0.8130	-0.1037	0.2944	0.025*
C20	0.4249 (4)	1.0515 (3)	0.39042 (11)	0.0298 (5)
H20A	0.5669	1.0611	0.4091	0.045*
H20B	0.3522	1.1670	0.3999	0.045*
H20C	0.4210	1.0328	0.3418	0.045*
C21	0.1799 (4)	0.9357 (4)	0.46943 (12)	0.0313 (5)
H21A	0.0415	0.9238	0.4477	0.047*
H21B	0.2015	1.0640	0.4859	0.047*
H21C	0.1978	0.8480	0.5072	0.047*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0260 (2)	0.0186 (2)	0.0239 (2)	-0.0034 (2)	0.01069 (18)	-0.0010 (2)
O1	0.0236 (7)	0.0221 (7)	0.0143 (6)	-0.0046 (6)	0.0065 (5)	-0.0005 (6)
O2	0.0322 (8)	0.0145 (7)	0.0267 (7)	-0.0010 (7)	0.0171 (6)	-0.0043 (6)
Ν	0.0322 (10)	0.0172 (9)	0.0205 (8)	0.0033 (8)	0.0119 (7)	-0.0025 (7)
C1	0.0183 (9)	0.0181 (10)	0.0178 (9)	-0.0012 (8)	0.0045 (7)	-0.0020 (8)
C2	0.0151 (8)	0.0158 (10)	0.0184 (9)	0.0018 (7)	0.0051 (6)	-0.0007 (7)
C3	0.0157 (9)	0.0152 (9)	0.0138 (8)	0.0002 (8)	0.0030 (7)	-0.0017 (7)
C4	0.0174 (8)	0.0121 (9)	0.0161 (8)	0.0022 (8)	0.0033 (6)	-0.0029 (8)
C5	0.0210 (9)	0.0158 (9)	0.0149 (8)	-0.0003 (8)	0.0058 (7)	-0.0008 (7)
C6	0.0212 (9)	0.0140 (9)	0.0252 (10)	-0.0009 (8)	0.0070 (8)	-0.0022 (8)

C7	0.0201 (9)	0.0137 (9)	0.0228 (9)	0.0007 (8)	0.0010 (7)	-0.0046 (8)
C8	0.0224 (9)	0.0188 (10)	0.0151 (8)	0.0038 (8)	0.0040 (7)	-0.0017 (8)
C9	0.0166 (8)	0.0142 (8)	0.0175 (8)	0.0024 (9)	0.0052 (6)	-0.0003 (8)
C10	0.0191 (9)	0.0126 (9)	0.0132 (8)	-0.0001 (8)	0.0068 (7)	0.0004 (7)
C11	0.0191 (9)	0.0157 (10)	0.0152 (8)	-0.0008 (8)	0.0043 (7)	-0.0013 (7)
C12	0.0176 (9)	0.0170 (10)	0.0201 (9)	0.0037 (8)	0.0078 (7)	0.0022 (7)
C13	0.0263 (9)	0.0119 (10)	0.0175 (8)	-0.0009 (8)	0.0106 (7)	-0.0017 (7)
C14	0.0235 (9)	0.0175 (10)	0.0157 (8)	-0.0043 (8)	0.0049 (7)	-0.0020(7)
C15	0.0186 (9)	0.0203 (10)	0.0146 (8)	0.0009 (8)	0.0044 (7)	0.0012 (7)
C16	0.0183 (9)	0.0187 (10)	0.0137 (8)	0.0007 (8)	0.0043 (7)	-0.0008 (7)
C17	0.0235 (10)	0.0217 (11)	0.0234 (10)	-0.0022 (9)	0.0108 (8)	-0.0001 (8)
C18	0.0248 (10)	0.0198 (10)	0.0245 (10)	0.0045 (9)	0.0077 (8)	0.0050 (8)
C19	0.0232 (9)	0.0192 (10)	0.0193 (9)	0.0045 (9)	0.0017 (7)	0.0002 (8)
C20	0.0473 (13)	0.0154 (11)	0.0285 (11)	0.0012 (10)	0.0128 (9)	0.0003 (8)
C21	0.0375 (12)	0.0286 (12)	0.0305 (11)	0.0058 (11)	0.0188 (10)	-0.0068 (10)

Geometric parameters (Å, °)

S-C16	1.659 (2)	С8—Н8	0.9500
O1—C9	1.372 (2)	C10-C11	1.391 (3)
O1—C1	1.452 (2)	C10—C15	1.401 (3)
O2—C16	1.365 (2)	C11—C12	1.398 (3)
O2—C13	1.411 (2)	C11—H11	0.9500
N—C16	1.329 (3)	C12—C13	1.379 (3)
N—C20	1.461 (3)	C12—H12	0.9500
N—C21	1.461 (3)	C13—C14	1.383 (3)
C1—C18	1.525 (3)	C14—C15	1.392 (3)
C1—C17	1.529 (3)	C14—H14	0.9500
C1—C2	1.529 (3)	С15—Н15	0.9500
C2—C3	1.541 (2)	C17—H17A	0.9800
C2—H2A	0.9900	С17—Н17В	0.9800
C2—H2B	0.9900	С17—Н17С	0.9800
C3—C4	1.526 (2)	C18—H18A	0.9800
C3—C10	1.542 (3)	C18—H18B	0.9800
C3—C19	1.551 (3)	C18—H18C	0.9800
C4—C5	1.399 (3)	С19—Н19А	0.9800
C4—C9	1.402 (2)	С19—Н19В	0.9800
C5—C6	1.391 (3)	С19—Н19С	0.9800
С5—Н5	0.9500	C20—H20A	0.9800
C6—C7	1.390 (3)	C20—H20B	0.9800
С6—Н6	0.9500	С20—Н20С	0.9800
С7—С8	1.382 (3)	C21—H21A	0.9800
С7—Н7	0.9500	C21—H21B	0.9800
C8—C9	1.393 (3)	C21—H21C	0.9800
C9—O1—C1	117.53 (14)	С12—С11—Н11	119.2
C16—O2—C13	121.16 (15)	C13—C12—C11	118.60 (18)
C16—N—C20	121.99 (17)	C13—C12—H12	120.7
C16—N—C21	120.92 (19)	C11—C12—H12	120.7
C20—N—C21	117.04 (18)	C12—C13—C14	121.78 (18)

O1—C1—C18	108.83 (17)	C12—C13—O2	120.66 (18)
O1—C1—C17	104.27 (15)	C14—C13—O2	116.86 (18)
C18—C1—C17	110.09 (17)	C13—C14—C15	118.75 (18)
O1—C1—C2	108.65 (16)	C13—C14—H14	120.6
C18—C1—C2	114.59 (16)	C15—C14—H14	120.6
C17—C1—C2	109.87 (16)	C14—C15—C10	121.39 (19)
C1—C2—C3	115.50 (16)	C14—C15—H15	119.3
C1—C2—H2A	108.4	C10-C15-H15	119.3
С3—С2—Н2А	108.4	N—C16—O2	108.95 (17)
C1—C2—H2B	108.4	N—C16—S	126.74 (15)
C3—C2—H2B	108.4	O2—C16—S	124.30 (15)
H2A—C2—H2B	107.5	C1—C17—H17A	109.5
C4—C3—C2	108.26 (14)	C1—C17—H17B	109.5
C4—C3—C10	112.73 (15)	H17A—C17—H17B	109.5
C2—C3—C10	110.92 (16)	C1—C17—H17C	109.5
C4—C3—C19	109.12 (16)	Н17А—С17—Н17С	109.5
C2—C3—C19	107.21 (15)	H17B—C17—H17C	109.5
C10—C3—C19	108.45 (15)	C1—C18—H18A	109.5
C5—C4—C9	117.09 (17)	C1C18H18B	109.5
C5—C4—C3	121.19 (16)	H18A—C18—H18B	109.5
C9—C4—C3	121.65 (17)	C1—C18—H18C	109.5
C6—C5—C4	122.19 (17)	H18A—C18—H18C	109.5
С6—С5—Н5	118.9	H18B—C18—H18C	109.5
C4—C5—H5	118.9	C3—C19—H19A	109.5
C7—C6—C5	119.49 (19)	С3—С19—Н19В	109.5
С7—С6—Н6	120.3	H19A—C19—H19B	109.5
С5—С6—Н6	120.3	C3—C19—H19C	109.5
C8—C7—C6	119.52 (18)	H19A—C19—H19C	109.5
С8—С7—Н7	120.2	H19B—C19—H19C	109.5
С6—С7—Н7	120.2	N—C20—H20A	109.5
С7—С8—С9	120.77 (17)	N—C20—H20B	109.5
С7—С8—Н8	119.6	H20A—C20—H20B	109.5
С9—С8—Н8	119.6	N—C20—H20C	109.5
O1—C9—C8	114.96 (15)	H20A-C20-H20C	109.5
O1—C9—C4	124.07 (17)	H20B-C20-H20C	109.5
C8—C9—C4	120.93 (18)	N—C21—H21A	109.5
C11—C10—C15	117.86 (17)	N—C21—H21B	109.5
C11—C10—C3	123.12 (17)	H21A—C21—H21B	109.5
C15—C10—C3	119.02 (17)	N—C21—H21C	109.5
C10-C11-C12	121.60 (18)	H21A—C21—H21C	109.5
C10—C11—H11	119.2	H21B—C21—H21C	109.5
C9—O1—C1—C18	-81.6 (2)	C5—C4—C9—C8	-0.5 (3)
C9—O1—C1—C17	160.98 (17)	C3—C4—C9—C8	176.53 (18)
C9—O1—C1—C2	43.8 (2)	C4—C3—C10—C11	-4.1 (3)
O1—C1—C2—C3	-58.0 (2)	C2—C3—C10—C11	117.48 (19)
C18—C1—C2—C3	63.9 (2)	C19—C3—C10—C11	-125.04 (19)
C17—C1—C2—C3	-171.53 (17)	C4—C3—C10—C15	177.00 (16)
C1—C2—C3—C4	40.8 (2)	C2—C3—C10—C15	-61.4 (2)
C1—C2—C3—C10	-83.3 (2)	C19—C3—C10—C15	56.1 (2)

C1—C2—C3—C19	158.42 (16)	C15-C10-C11-C12	1.6 (3)
C2—C3—C4—C5	165.70 (17)	C3-C10-C11-C12	-177.26 (17)
C10-C3-C4-C5	-71.2 (2)	C10-C11-C12-C13	-0.7 (3)
C19—C3—C4—C5	49.3 (2)	C11—C12—C13—C14	-0.4 (3)
C2—C3—C4—C9	-11.2 (3)	C11—C12—C13—O2	169.79 (16)
C10-C3-C4-C9	111.9 (2)	C16—O2—C13—C12	72.1 (2)
C19—C3—C4—C9	-127.53 (19)	C16—O2—C13—C14	-117.3 (2)
C9—C4—C5—C6	-0.1 (3)	C12-C13-C14-C15	0.5 (3)
C3—C4—C5—C6	-177.08 (19)	O2-C13-C14-C15	-170.06 (17)
C4—C5—C6—C7	0.4 (3)	C13-C14-C15-C10	0.5 (3)
C5—C6—C7—C8	-0.1 (3)	C11-C10-C15-C14	-1.6 (3)
C6—C7—C8—C9	-0.4 (3)	C3-C10-C15-C14	177.39 (17)
C1—O1—C9—C8	165.62 (18)	C20—N—C16—O2	-0.9 (3)
C1—O1—C9—C4	-16.5 (3)	C21—N—C16—O2	-178.18 (19)
C7—C8—C9—O1	178.71 (18)	C20—N—C16—S	177.94 (17)
C7—C8—C9—C4	0.7 (3)	C21—N—C16—S	0.7 (3)
C5—C4—C9—O1	-178.26 (18)	C13—O2—C16—N	-171.51 (18)
C3—C4—C9—O1	-1.3 (3)	C13—O2—C16—S	9.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
C7—H7···O1 ⁱ	0.95	2.55	3.414 (2)	151
C20—H20B···S ⁱⁱ	0.98	2.73	3.671 (2)	160
C20—H20C···Cg ⁱⁱ	0.98	3.22	3.543 (3)	101
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z$; (ii) x , $y+1$, z .				

sup-7

